Sign up today and take advantage of member-only content — the kind of timely, cutting edge industry insight that only Money Management Executive can deliver.
  • Exclusive Online Only Content
  • Free Daily Email News Alerts
  • Asset Management Blogs

Stock Advice: Hiring Software as Analyst

It's 7 a.m. and a slew of reports await you.

Your analyst, working all night, drilled down on the latest impact of the Eurozone crisis-yes, the banks are being rescued again-on a dozen industry sectors, and then wrote notes on 20-interesting stocks. Meanwhile, your assistant manager brainstormed new risk and allocation strategies for six portfolios.

Great job! You say. Bonus-well, at least a latte-you say.

Well, keep your money because neither are human.

The automation of analysis is arriving, thanks to technology that takes data and turns it into written reports-and, hopefully, insights.

Developed by two-year old artificial intelligence firm Narrative Science, the system, called Quill, reads any and all incoming data you assign to it. Then, it generates as many analytical reports as you like, in formats you create. It can be trained to use the same formalized analytical processes your staffers use and tailor reporting for each individual reader.

"Quill looks at the data and figures out what one can take from it, and then it figures out how to make genuinely insightful stories," says Kris Hammond, chief technology officer and co-founder of Narrative Science.

There have been systems screening financial data and handling basic searches perhaps since the days when vacuum-tubed computing devices filled entire offices-Quill goes beyond this.

First, it scours all data that flows into a financial firm: market data, economic stats, credit and risk ratings, news stories and drill-downs on a portfolio's companies and assets.

To create a sentence such as "Hood Chemical failed to meet its fourth-quarter earnings estimate of 10 to 20 cents a share," the system might pull earnings estimates provided, for example, by Zacks Investment Research and compare them to earnings results disclosed in a 10-K filing with the Securities and Exchange Commission.

To find volatility in a story, it might pull price changes from Nasdaq's TotalFeed of stock market data, to produce a statement like "Dynga shares bounced back 5% from yesterday's carnage, when the price of a share fell 10% to $12.50," or an Associated Press news feed to declare "Eurozone leaders agreed to radically restructure Spain's $124 billion bank recapitalization plan.''

Then, just like an analyst or journalist, it starts to mull all the potential interesting "angles" of this new information. Angles could include cases for industries coming in or out of favor or particular companies that might be worth closer inspection.

After the system pulls in all available facts, and evaluates all possible angles, it is ready to write. The "analyst" bears in mind the interests (previously inputted) of its target readers. And it uses familiar writing styles.

For example, the system is taught to spin out effective story "arcs" that work, basically, like a top-down newspaper article. Facts of greatest impact go first with background explanations following after. Stories on similar subjects are referenced for context. Full names and stock symbols aren't spelled out after first company mention, etc.

How does the system know these things?

That comes out of Narrative Science's development process. Roughly a third of the company's 40 employees are writers, journalists and other analysts. They are trained to be aware, like cognitive psychologists or anthropologists, of all their thinking processes as they write. They can break down these methods and translate them into code with help from their programmer colleagues.

If, then, an analyst's thinking processes can be articulated clearly and comprehensively (consider all the in-house guidebooks and training processes you've already developed regarding your "investment strategies"), then the team at Narrative Science will build an addition to Quill around it. The company is continuously developing new strategies for studying and adapting client thinking processes.

"The limits on the application of this product in finance are only the limits that exist in analytics itself," Hammond says.

The company continues to look for new applications: like systems that can analyze all the information on a fund's distribution process and suggest cost cuts, and so on. If a thing produces data, Quill can write about it.

Once Quill is taught to write a particular kind of report, it can then crunch them out at lightning speed and superhuman volume. And customize each one.

"The idea of focusing on an audience, on who I am talking to, is essential. Will they be interested in this characterization, or in this angle? We can distinguish between what one audience would want in comparison to others and tailor accordingly," Hammond says.

Already, Quill crunches out thousands of sports, real estate and financial stories for clients weekly. It also helps other companies, such as restaurants or retail chains, scour through terabytes of monthly sales data and describe what's going on.